10 research outputs found

    The structure of classical extensions of quantum probability theory

    Get PDF
    On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed

    Quantization and noiseless measurements

    Full text link
    In accordance with the fact that quantum measurements are described in terms of positive operator measures (POMs), we consider certain aspects of a quantization scheme in which a classical variable f:R2Rf:\R^2\to \R is associated with a unique positive operator measure (POM) EfE^f, which is not necessarily projection valued. The motivation for such a scheme comes from the well-known fact that due to the noise in a quantum measurement, the resulting outcome distribution is given by a POM and cannot, in general, be described in terms of a traditional observable, a selfadjoint operator. Accordingly, we notice that the noiseless measurements are the ones which are determined by a selfadjoint operator. The POM EfE^f in our quantization is defined through its moment operators, which are required to be of the form Γ(fk)\Gamma(f^k), kNk\in \N, with Γ\Gamma a fixed map from classical variables to Hilbert space operators. In particular, we consider the quantization of classical \emph{questions}, that is, functions f:R2Rf:\R^2\to\R taking only values 0 and 1. We compare two concrete realizations of the map Γ\Gamma in view of their ability to produce noiseless measurements: one being the Weyl map, and the other defined by using phase space probability distributions.Comment: 15 pages, submitted to Journal of Physics

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416

    Bibliography on quantum logics and related structures

    No full text
    corecore